Motion Planning Using an Impact-Based Hybrid Control for Trajectory Generation in Adaptive Walking
نویسندگان
چکیده
This paper aims to solve a major drawback of walking robots i.e. their inability to react to environmental disturbances while navigating in natural rough terrains. This problem is reduced here by suggesting the use of a hybrid force‐position control based trajectory generation with the impact dynamics into consideration that compensates for the stability variations, thus helping the robot react stably in the face of environmental disturbances. As a consequence, the proposed impact‐based hybrid control helps the robot achieve better and stable motion planning than conventional position‐based control algorithms. Dynamic simulations and real world outdoor experiments performed on a six legged hexapod robot show a relevant improvement in the robot locomotion.
منابع مشابه
A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملFeedforward and Feedback Dynamic trot Gait control for a Quadruped walking Vehicle
To realize dynamically stable walking for a quadruped walking robot, the combination of the trajectory planning of the body and leg position (feedforward control) and the adaptive attitude control using sensory information (feedback control) is indispensable. In this paper, we initially propose a new trajectory planning for the stable trot gait named 3D sway compensation trajectory, and show th...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011